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spacings were, however, not reproducible and did 
not show any ordered pattern. 

Orientation of the crystallites was not accom
plished by stretching the melted polymers. It is 
obvious that additional study is necessary in order 
to understand more completely the structure and 
arangement of the crystallites. 

Melting Points as a Function of the Length of 
the Straight Side Chains.13-17—The melting points 

(13) H. Mark and A. V. Tobolsky, "Physical Chemistry of High 
Polymeric Systems," Interscience Publishers, Inc., New York, N. Y., 
1950. 

(14) M. D. Tilicheev, V. P. Peshkov and S. A. Yuganova, Zhur. 
Obshchtl KMm., 21, 1229 (1951). 

(15) W. Sakai and T. Seiyama, Busseiron Kenkyil, No. 28, 29 
(1950). 

Introduction 
In a previous paper,8 hereafter called paper I, a 

scheme for using structures as an aid in understand
ing ir-electron spectra was presented. The scheme 
usually requires the solution of a preliminary prob
lem, preliminary in the sense that its solution does 
not lead directly to theoretical predictions but only 
"paves the way." The preliminary problem is to 
transform suitably to non-diagonal form a given 
observed set of term values arranged along the 
diagonal of a square matrix. The matrix before 
transformation is considered to be the dynamic 
variable electronic energy in the Heisenberg repre
sentation. 

The actual method of computing the transforma
tion matrix for forming a new non-diagonal matrix 
of the energy was not given in paper I (though an 
example of the procedure to be followed was given 
in Appendix I). In the present paper the object 
is to define a particular representation in which the 
energy is non-diagonal, and which is called the 
structure representation; and to show how to con
struct the transformation matrix. The transform
ation matrix is not always unambiguously deter
mined, and the ambiguity is given detailed treat
ment. A particular method of removing the am
biguity is described, using as examples a given 
molecule (crystal violet) and another (^-methoxy 
malachite green) which is considered as a perturba
tion. This choice of examples is also a preparation 
for paper I I I of this series, which deals at length 
with triphenylmethane dyes, and which will illus
trate the making of predictions using the scheme in 

(1) Presented in part at the Spectroscopy Symposium, Ohio State 
University, Columbus. Ohio, June 1953. 

(2) Supported under Contract R-351-20-2 Air Research and De
velopment Command. 

(3) W. T. Simpson, T H I S JOURNAL, 7», 597 (1953). 

of the even-numbered n-alkyl chain (12 to 18 car
bon atoms) alcohols,18 acids,18,19 paraffins,14 poly
methacrylates and polyacrylates are plotted in 
Fig. 4 as a function of the number of carbon atoms 
in the chain. It may be noted in Fig. 4 that the 
curves (except for the polymethacrylates) are 
essentially similar in shape. 
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and Co., Boston, Mass., 1944. 

(19) T. L. Ward and W. S. Singleton, J. Phys. Chem., 56, 696 
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paper I. We now give a formal statement of the 
object of this paper. 

Given a diagonal energy matrix E the problem is 
to find the transformation matrix S such that 

E ' = S-1ES 

where E' is in the structure representation, a rep
resentation defined by the requirement that the 
matrix elements be labeled with indices which cor
respond to structures. Unit vectors in this repre
sentation refer to the same quantum states (not 
stationary states) as described by wave functions 
which correspond to structures, in that the squares 
of the wave functions transform like the correspond
ing structures. 

Applying the methods of part I of paper I we 
consider as given (i) n structures and their behavior 
under the operations of the group of the molecule; 
(ii) n energy levels (the observed spectroscopic 
term values which are the elements of the diagonal 
matrix E) and their species. In addition we know 
that (iii) the transformation properties of the struc
tures are consistent with the species of the states of 
the molecule. 

Preliminary Discussion.—In this section we 
shall discuss qualitatively how the transformation 
matrix is to be calculated, but first shall present 
the notation that is to be used subsequently. The 
species of the levels are arranged serially in the or
der of the diagonal elements of E. There are n 
elements 

•En, Em £33, • • . , £ « n 

with species4 

Ta, Tp, Ty rv 

(4) This notation is used in preference to Ti, r«, T Tn because 
conventionally V with a numerical subscript stands for a particular 
species, instead of one of serially numbered species for a particular 
dynamical system. 
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some of which may be the same. To these elements 
correspond » stationary state wave functions 

^ 1 , ^ S . ^ 3 , • . . . ^ n 

The wave functions are unknown, except in princi
ple. The structures are also arranged serially. 

(D, (2), (3) U) 
(parentheses are used to denote structures) and the 
assumption is made that to each structure there 
corresponds a wave function (not an energy eigen-
state except in unusual circumstances) 

4<l, ^ , 4>3, • . •, V' 

and that the n wave functions are mutually orthog
onal. Note that stationary state ^'s are labeled 
with subscripts and structure yVs with superscripts. 

The most common change of representation in 
matrix mechanics occurs with the diagonalization 
of a matrix. A matrix E' is made diagonal by the 
transformation 

E = SE'S"1 

S and S - 1 are obtained using a theorem in matrix 
algebra which states that the columns of S - 1 are 
the normalized orthogonal eigenvectors of E'. 

In this paper the fundamental task is to perform 
the reverse transformation 

E' = S-1ES 
that is, to find S (or S - 1 ) . The idea for the solution 
of the problem is to use the fact that S is the same 
as in the companion diagonalization problem. 
Turning to the diagonalization problem, we find 
that we are already familiar with the process of 
finding an S which provides a transformation at 
least partially into the Heisenberg representation. 
This operation is usually referred to by another 
name, "factoring the secular equation." Since the 
transformation properties of the structures are 
known, we are able, as it were, to factor the secular 
equation for the problem of a linear variation 
method type calculation involving interactions 
among wave functions corresponding to structures. 
If the secular equation can be factored unambigu
ously (complete determination of \t;'s as linear com
binations of ^''s) S can be constructed unambigu
ously. 

We have now to translate into the vectorial 
language of matrix mechanics the familiar secular 
equation factorization process. 

Incorporation of Symmetry.—The usual method 
of factoring the secular equation is to set it up 
using linear combinations which belong to various 
species of the group. Those combinations which 
belong to different species do not interact, and if 
there is only one combination for each species, the 
secular equation is completely factored. We con
sidered this case first, and for the present exclude 
degeneracy. 

The linear combination (not normalized) 
n 

where \pj belongs to a particular species, i ' v is 
constructed by forming a fragment; that is, by 
operating on one member of a set of equivalent 
^ ' s , say, ^k, as6 

(S) Tf some R of t h e g r o u p can !>** found which send*; 4r in to ^* 
\lT and tpa are equ iva l en t . 

<^> = £ xr7(R)R^ 
R 

Here \rv (R) is the character for the operation R 
and the species Ty, and R^* is the \pi obtained by 
operating on v̂ k with the operation R. The coef
ficients in this expression, when suitably grouped 
together, are the same as the t's. This results from 

R ( k l ) 

where the sum is over all operations R(kl) that send 
l/^into \pl) and 

. /V 1 Vj dr = hi 

so that with ^j = <^fc> we have6 

R(Wj 

Quantum mechanical transformation theory gives, 
if the t's are normalized 

'ii = -S-'ii 

or equivalently 
' l j = -Sj 1 

so that the first problem is solved. 
It should be noted that the character table for 

the group is required, and also a knowledge of 
which operations send ^ into ft, that is, the trans
formation properties of the ^' 's. We now consider 
the connection with structures: the ^''s are known 
only to the extent that the transformation proper
ties of the (^')2's are the same as the transforma
tion properties of the (i)'s (structures). As shown 
in paper I (Part I and Appendix I) for practical 
purposes this correspondence may often be simpli
fied so that the transformation properties of the 
^•'s themselves are inferred from the (i)'s. Alter
natively the fragments may be made-up directly 
from structures so that the quantity essential to 
the definition of the t's, R(kl), may be taken as one 
of the operations which sends structure k into struc
ture 1 ((k) into (I)). We consider next the case in 
which a given species is represented more than once, 
but still assume no degeneracy. 

Incomplete Determination by Symmetry.—If 
the full reduction of the secular equation cannot 
be accomplished on the basis of symmetry, or, 
equivalently, the transformation in the reverse 
direction is not completely determined, there will 
be more than one fragment belonging to at least 
one of the species. Extra fragments are always 
generated from non-equivalent5 ^ ' s . (It follows that 
if all \^'s are equivalent the transformation is com
pletely determined.) 

The usual device in setting up the secular equa
tion in the case where it cannot be completely fac
tored is to use as a basis combinations of equivalent 
^-''s (fragments). In matrix notation this is the 
same as setting equal to zero the mixing coefficient 
between parts of an eigenvector of E', or column of 
S"1. To illustrate, if ŷ 1 and ^ are not equivalent, 
but \pl up to ^J and ^ to ^ are equivalent, we 
would have, at least for the identity species IY two 

(6) Since Ty is the species of the j th e n e n y etgesstate , the formula 
could h a v e been wr i t t en wi th ^ instead of x • The rndex fc does 
not appear on the left because k only determines the phases of the 
t's (any t^1 used to genera te t he f ragment gives the same fragment) . 
Tlierefnre tlie indices ma tch ill t h e final equa t ion for t h r / 's 
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fragments, <\p1> and < ^ q > belonging, say, to Ta 
and Ts. Two columns of S - 1 would have the fol
lowing appearance 

r 
f / 
V^-1I 
f* 
^ ? + 1 1 

^" 

h 
Ta 

/hi 
f tn 

K-
0 
0 

V0 

i'i • 
Tg . 

1,1 

. . h • • 

..Ts . 
0 
0 

6 
hi 
h+l.i 

*ni 

• in 
.. T, 

The first q — 1 tu's are coefficients in <\pl> and the 
remaining elements in the column are zero, while 
the non-zero kjs come from < ^ a > . The matrix 
above cannot, through a similarity transformation, 
be used to completely diagonalize E', but will 
factor it as much as symmetry allows. Concomi
tantly it would seem that the above matrix could 
not be used to change E to E'. To understand this 
situation is the next aim. 

Imagine that we have set up the secular equation 
I E' - XI | = 0 

using a set of I/^'S considered as known, that is with 

(H is the energy in the Schrodinger representation.) 
The eigenvectors of E' will be the columns of the 
matrix S - 1 above, except that the mixing between 
fragments of I/^'S of the same species is actually de
termined. More specifically, there is determined a 
matrix like the one above except that ^1 is replaced 
by 

•Ai = U - c»)'/^i + rfj 
and also ^j by 

(Note that orthogonality and normalization are 
preserved—also 0 ^ c $C 1.) The role of c in this 
instance is to mix fragments of non-equivalent ^''s 
so as to get the best approximation to the true 
energies. If the ^''s are perfect, the roots of the 
secular equation will be the true energies. For a 
given set of perfect \p{'s a c is determined, say C1. 

Now imagine that we have linear combinations of 
perfect yV's which transform the same way, called 
£>''s.7 From these we could again construct frag
ments, which could then be automatically mixed 
by the secular equation technique, leading to roots 
of the secular equation equal to the observed ener
gies. The <p''s are also perfect. However for the 
<pl's a different c is determined, say C2. 

When we consider perfect \A''s or p''s we are in 
effect dealing with the structure representation, 
but now we must realize that the form of the func
tions is not known, only the transformation prop
erties. That is, we do not know if we are dealing 
with the ^''s or the <pvs and so we do not know what 
to take for c. This illustrates a fundamental am
biguity. In matrix notation the ambiguity arises 
from the fact that if S - 1 and S are constructed with 
c incorporated as any number 0 ^ c ^ 1, still 
_ _ _ _ _ _ E' = S-1ES 

(7) For example, consider the first and third energy eigen-^'s for a 
harmonic oscillator, ^i and ipa. <pi = ^i -f- a^s and <pt = ^g — aipi 
transform like 4*\ and to (even functions). Moreover one could, using 
the linear variaton method, obtain the true energies Ei = hv/2 and 
I'.t - 5hn/2 using Lhe ^'s as "trial" functions 

has the property that its eigenvalues are the diag
onal elements of E. 

The generalization to cases with more constants 
or greater ambiguity is obvious. 

Without knowing the shapes of the \p'l's and the 
<pvs we can say that for a particular structure (k), 
say, \f/k and <pk have the same general shape but dif
ferent detailed shapes. The detailed shapes are 
related in some fashion to the values of c, and this 
relationship is discussed further in the last section 
of the paper. 

Next, however, we consider the question of the 
actual number of arbitrary constants, which num
ber was one in the example above. The most gen
eral transformation matrix has the fragments mixed, 
with coefficients incorporated as "unknowns." 
The number of mixing coefficients, or constants 
needed, and hence the number of constants in E' 
can be calculated by considering the individual 
normalized fragments as single matrix elements. 
For example the matrix above may be written as 

i/i AJ 

(<+!>.. . 0 . . . \ 
\ 0 . . . <,AS> •. • / 

If for the particular species I \ , say, there are m 
fragments then there will be before normalization 
and orthogonalization m2 constants. Normaliza
tion reduces this by m and orthogonalization by the 
number of pairs, (m2 — m)/2, so the number re
maining is 

mi — m — (m2 — m)/2 = (m2 — m)/2 

To find the total number of arbitrary constants we 
must sum over all species. 

Incidentally, when m = n (which would make 
Tt = T0, the identity species) the number of arbi
trary constants is («2 — «)/2 and there is no utiliza
tion of symmetry at all. 

Next we take up a particularly straightforward 
example in which there is no ambiguity. 

Benzene as an Example.—Consider benzene 
(see also paper I) with only the two equivalent 
structures 

S/ and \ / 
(1) (2) 

The symmetry group of the molecule is taken to be 
D6h with the character table shown below. 

The object is now to obtain the transformation 
matrix, S - 1 . The t's, which on normalization are 
the matrix elements of S - 1 , are obtained from the 
expression 

'u = E xr?(R(kl)) 
R(kl) 

However, in practice, instead of making explicit 
use of this formula we proceed in a manner analo
gous to the procedure for factoring the secular equa
tion in a linear variation calculation and form 
fragments. Moreover, as explained in Paper I, 
we shall use structures, not ^' 's. The t's are simply 
the coefficients of the structures in these fragments. 

Using structure (1) we perform on it the opera
tions of the group, writing down the serial numbers 
of the structures obtained, multiplied by the appro-
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A i 8 

A i u 

A2, 
A2a 

Big 

Biu 

B 2 J 

B2u 
E l s 

E i u 

E28 

E2u 

E 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

C2 

1 

1 

1 

1 

- 1 

- 1 

- 1 

- 1 

- 2 

- 2 

2 

2 

2C1 

1 

1 

1 

1 

1 

1 

1 

1 

- 1 

- 1 

- 1 

- 1 

2C6 3C 2 ' 3C2" iE iC2 

E ' = S-1ES - C 

o o 
o o 
o o 
0 0 

priate characters for the particular species, and 
summing. There are twelve operations of the 
group which leave (1) unchanged and twelve opera
tions which convert structure (1) into structure (2). 
Thus, using the characters for the species Aig we 
obtain the fragment 

12(1) + 12(2) 

The process is repeated for all other species of the 
group and it is found that the only other fragment 
different from zero is 

12(1) - 12(2) 
belonging to the species B2u. From the coefficients 
of the structures in the fragments, the vectors (be
fore normalization) in the structure representation 
are found by inspection to be 

OA1.
 and ( -J3B 2 U 

On normalization these vectors form the columns of 
S - 1 and therefore 

= / 2 -V , 2 - / A 
V2_,/« - 2 " 1 A y 

Thus S - 1 is completely defined by the symmetry of 
the molecule and we can now make the transforma
tion from the observed energy matrix to the struc
ture representation. The observed energy of the 

- 2 
2 
2 

2iC, 

1 

- 1 

1 

- 1 

1 

- 1 

1 

- 1 

- 1 

1 

- 1 

1 

2iC6 

1 

- 1 

1 

- 1 

- 1 

1 

- 1 

1 

1 

- 1 
- 1 

1 

3iC2 

— 1 

— 1 

- 1 

- 1 

0 
0 

0 

0 

3iC2 

1 

- 1 

- 1 

1 

- 1 

1 

1 

- 1 
0 

0 

n 
0 

/Mg —"- B2u
8 transition is 3.81 (energies in this paper 

are in units such that one unit is 104 cm. - 1). This 
gives 

0 
3.81, 

and 
1.91 -1.91N 

•1.91 1.91/ 
The difference in energy between a single Kekule 

structure and the ground state of the molecule is 
1.91 (55 kcal./mole). This quantity is the ob
served or experimental vertical resonance energy 
referred to the Kekule" structures as defined by the 
above transformation. As is well known there is no 
reason to suppose that this quantity should agree 
very well with thermochemical (non-vertical) reso
nance energy measurements (36 kcal./mole).9 

Before proceeding to the examples of the tri-
phenylmethane dyes we consider a new notation to 
distinguish structures as used in organic chemistry 
from structures in the more technical sense. 

(8) A. S. Davydov, Zhur. Eksptl. Teorel. Fiz., 21, 673 (1951); 
A. C. Albrecht and W. T. Simpson, J. Chem. Phys., 21, 940 (1953). 

(9) However, it agrees better with Hornig's value (~65 k c a l / 
mole), D. F. Hornig, T H I S JOURNAL, 72, 5772 (1950). 

Semantic Considerations.—As in the concluding 
section of paper I two types of structures are to be 
distinguished. The structures which are "given," 
the transformation properties of which we use in 
defining the structure representation, are not con
sidered to be quantum mechanical entities. They 
are considered to be defined instead by the classical 
phenomenological theory of valence in organic 
chemistry. They have been called by various 
names, including mesomers, electromers, resonance 
forms, and paper structures. We shall refer to 
these structures as structuresi. 

On the other hand, matrix elements in the struc
ture representation are, when derived from ob
served energies, exact quantum mechanical quanti
ties. They may then certainly be considered to 
be derived from interactions among wave functions 
(structure functions) which, in suitable combina
tions, exactly represent the various energy eigen-
states. The squares of these component wave 
functions are called structures2- Less precisely the 
wave functions themselves, or unit vectors in the 
structure representation, are sometimes called 
structures2. These unit vectors represent the 
same states, in the abstract sense, as are represented 
by the wave functions. 

With the new notation it is possible compactly 
to characterize the theory of paper I. It is a sug
gestion to use structures! and hence the resources of 
classical organic chemistry, together with a quan
tum mechanical formalism, to make predictions. 
The postulate is to be tried that an equivalence 
with respect to transformation properties, energies 
and other properties holds 

structuresi a structures2 

The degree of success of the theory on many appli
cations may afford an objective estimate of the 
degree of truth in the equivalence. This equiva
lence must be understood to be a relation which is 
not quantum-mechanical. It relates theory of a 
fundamental nature (quantum mechanics) to the
ory of a lower level (classical valence theory). Any 
such scheme would be unnecessary if it were not 
for the virtual impossibility of solving the equa
tions of the fundamental theory.10 The testing of 
the equivalence postulate is not itself a low level 
theory, but conceivably quite the reverse, in that 
use of modern inductive logic may be indicated. 

(10) The equivalence is a limiting law in that it may be considered 
to hold exactly for molecules for which there is no interaction among the 
structures (domain of unquestioned applicability of classical valence 
theory). 
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Linus Pauling's name is strongly associated with 
this equivalence. In fact, in 1939 Pauling outlined 
a treatment of the color of dyes which in effect 
makes use of the equivalence and which in many 
ways anticipates the work in the present series of 
papers.11 

Triphenylmethane Dyes with Three Structures. 
—In the remaining sections the material above is 
further illustrated, but with cases which introduce 
the problem of ambiguity and require the considera
tion of degeneracy. First we treat crystal violet 
using three structures. Following the procedure 
outlined in the Introduction we consider as given: 
(i) the three structuresi12 

M e s N y ,NMe2 Me2N< 

SNMe 2 

(D 

NMe2 

Me2N 

: NMe2 
(3) 

(ii) the first three energy levels Eu = 0, £22 = 
1.760, £33 = 1-760 with species Ai, E, E, respec
tively,13 and (iii) the fact that the species of the en
ergy levels are consistent with the species of the 
fragments, as will be seen. 

Crystal violet is considered to have at least C3v 
symmetry, with the following character table 

E cry1 ov2 <r,3 C3
1 C3

2 

A1 

A2 

E (x,y) 

1 

1 

2 

1 

- 1 

0 

1 

- 1 

0 

1 

- 1 

0 

1 

1 

- 1 

1 

1 

- 1 

The fragment for the species A1 is generated us
ing structure (1), yielding 

2(1) +2(2) +2(3) 
Recalling that the coefficients of the structures in 
the fragments are the t's we have the normalized 
vector in the structure representation 

1A1 = 3-A 
\3-Vi/ 

(11) L. Pauling, Proc. Nat. Acad. SH., 25, 577 (1939). 
(12) Each structure may be considered to contain all of the addi

tional structures which arise from benzene type resonance in the phenyl 
groups. 

(13) The experimental assignment of the levels and factors affecting 
numerical precision will be fully discussed in paper III . The transi
tion energies are all based on measurements in glacial acetic acid. 

The method outlined in paper I for generating 
fragments for the degenerate species E14 made use 
of the matrix elements of the irreducible representa
tions. In this paper the usual method of comput
ing fragments, which requires only the characters of 
the E species, is used. Forming fragments with 
each structure in turn and using the characters of E 
we get 

(a) - 2(1) - (2) - (3) 

(b) = 2(2) - (3) - (1) 

(C) = 2(3) - (1) - (2) 

only two of which are linearly independent. The 
problem is now to pick suitable linearly independ
ent and orthogonal fragments, chosen so that they 
also form bases for irreducible representations of the 
symmetry group of molecules which are to be con
sidered as perturbed crystal violet. The direction of 
the perturbation will be taken along the y-axis (re
ferring to the coordinate, system for the structures) 
and it is sufficient to take as the character table for 
the group of the perturbed molecules 

<7V 

My) 
B(«) 

l 

- l 

where <rv is the operation of reflection in the yz-
plane. In order to find the new fragments which 
form bases for the irreducible representations of the 
new group we form fragments from the fragments 
(a), (b) and (c) using the character table for the 
group of the perturbed molecule, (a) already be
longs to A of the new group. From (b) we find 

Y x(R)r*R(b) = [2(2) - (3) - (I)] + 
R 

[2(3) - (2) - (I)] - - [2(1) + (2) + (3)] = - ( a ) 

and 
2>(R)rBR(b) = [2(2) - (3) (I)] -

[2(3) - (2) - (I)] = 3(2) - 3(3) 

The fragments obtained from (c) are the same as 
those from (b) (except for the sign, which is trivial) 
and thus the desired fragments are 2(1) — (2) — (3) be
longing to the species A and 3(2) —3(3) belonging to 
the species B. Thus the orthogonal vectors in the 
structure representation belonging to the species E 
are 

2X / ON 
- 1 and I 3 

which on normalization become 
/2(6)-1A' 

- 6 "'A 
\ - 6 - V . 

0 
2 -Vi 
- 2 -Vi 

(14) In paper I it was wrongly stated that only Ti" and T i" appear. 
In fact, IV 1 and IV* also give non-vanishing fragments which are iden
tical with those given. (Hence only two linearly independent frag
ments were generated.) This difficulty arose because of the "direc
tional" properties of the matrices of E. If structure (3) (in the nota
tion of paper I) had been used to generate the fragments, only two non-
vanishing fragments would have been obtained. In addition, there is a 
typographical error in the character table for Civ and V 3/2 should 
read "s/3/2. 

file:///3-Vi/
file:///-6-V
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These vectors, together with the A1 vector, give 

i>\ $2 4>s 

^ / 3 - ' A 2(6)-1A 0 
S- ' (CV) = ^2 f 3-1A - 6 - 1 A 2-1A 

ip3 Vs-1A -6-1A -2-1Ay 
Note t ha t except for the phase of the degenerate 

representation there is no ambiguity. We also 
find this result from the formula for the arbitrary 
constants in S - 1 

y ] (m2 — m)/2 
A1E 

because 
m — 1 for A and E15 

When we adopt 

/ 0 0 0 
E(CV) = ( 0 1.760 0 

\ 0 0 1.760/ 

for the energy in the Heisenberg representation1 3 

we have, using 
E' = S-1ES 

/ 1.173 -0.587 -0.587N, 
E'(CV) = I -0.587 1.173 -0.587 

V-0.587 -0.587 1.173/ 
in the structure representation. 

We turn now to methoxy malachite green. The 
observed energies from the spectrum referred to 
E11 = 0 for crystal violet are x, x + 1.650 and x + 
2.160, where x is to be determined.13 The species 
are A, B and A, respectively.13 Using the charac
ter table of the perturbed molecule and the three 
structures 

Me2Xv , X M e 

V 

BOMe 

(D 

NMe2 

Me2X 

:OMe 

(3) 

we obtain the fragments 
(1) and (2) + (3) 

belonging to A, and 
(2) - (3) 

(15) The correctness of the formula for the number of arbitrary 
constants in the case where there is degeneracy has not actually been 
proved. However if the phases of the degenerate representations are 
considered determined it is believed that the formula is correct with 
each degenerate set of fragments counted as one. If, for example, 
E of Cav occurred twice there would result, after selection of the phase, 
one arbitrary constant in S - 1 . Consider each degenerate pair to con
sist of an A and a B part (group of lower symmetry). Then S"1 is 
restricted so that the mixing coefficient between the A parts is the same 
as the mixing coefficient between the B parts. 

belonging to B. Hence for A, w = 2, and there 
will be (22 - 2 ) /2 constants in S"1 . 

We saw in the section "Incomplete Determina
tion by Symmetry" tha t with 

'Ji = V 
& = 2"1A ( ^ + +*) 

to be completely general we must use 

c-h + (1 - c2 

and 
(1 - C2)''A1^1 - (^3 

in constructing S^1. This gives for methoxy mala 
chite green 

^ l 4-2 ^ 3 

i/*'/c o (i - c2y/-. 
S-'(mMG) = <P\ 2"1A(I - C

2)>A 2"1A -2""1Ac 
1/Aa-1A(I - c2)'A -2"1A -2"1Ac 

The problem of selecting (not determining) the 
constant must be solved before we can find E ' for 
the dye. 

We now make an assumption characteristic of 
work with the structure representation, and based 
on the equivalence, structures! « structures2. The 
assumption, linking the two substances crystal 
violet and methoxy malachite green, is tha t 

E'(mMG) = E'(CV) + SE' 

with 

/SEi, SEi2 SEi 
SE' = ( SEi1 0 0 

W 1 0 0 
(5Ei2 = 5-Ei's = SEn = S-Ea1, because of the symme
try of the matrix and of the molecule). The physical 
meaning of the assumption is t ha t the detailed 
shapes (see the section "Incomplete Determination 
by Symmetry") of the i/^'s for the perturbed mole
cule are picked in such a way t ha t the energies and 
interaction energies not involving structure2 (1) are 
unchanged. This is suggested, of course by the 
structures!. 

We now compute c in S - 1 (mMG). First we 
perform the transformation E ' = S - 1 E S using 
S - 1 with its dependence on c. This gives £23 
(mMG) as a function of c. The relation SE^ = 0, 
or 

E'niQM) = £'»(mMG) 

is then used to determine c. (The value is found 
to be 0.469). The zero of energy is determined 
similarly and it is found tha t x = 0.110. This gives 

/0 .110 0 0 

E(mMG) = ( 0 1.760 0 
Vo 0 2.270/ 

which after transformation into the structure rep
resentation is 

/ 1.794 - 0 . 6 3 2 - 0 . 6 3 2 ^ 
E ' (mMG) = I - 0 . 6 3 2 1.173 - 0 . 5 8 7 

V 0.632 - 0 . 5 8 7 1.173/ 

The £22 matrix element is understandably the same 
as for crystal violet because in each case 

^2 = 2 - 1 A ( ^ 2 - ^ ) 

and the £ ' y values not involving (1) are unchanged. 
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The transformation matrix is 

+*/0.4694 0 
S-l(mMG) = }4 0.6244 0.7071 

,iAo.6244 -0.7071 

and the matrix of the perturbation 

/ 0.621 -0.045 
SE' = I -0 .045 0 

\ - 0 . 0 4 5 0 

0.883O1 

-0.3319 
-0.3319, 

-0.045\ 

I ) 
It is encouraging to note that 8En > 0 which is in 
accord with chemical intuition based on structures].. 
I t means simply that ethers are less basic than am
ines. The low value SE{2 is also encouraging but 
no simple interpretation of the negative sign can be 
made (the 1-2 interaction is increased in magni
tude by the perturbation). After we have dis
cussed the dyes on the basis of four structures given 
we shall relate the 3 X 3 case to the 4 X 4 case, 
which will make it possible to understand 5E{2 for 
the 3 X 3 case. 

Triphenylmethane Dyes with Four Structures.— 
Next we try to fit observed levels and structures 
together into a consistent scheme using (1), (2) 
and (3) as above and also 

Me2Nv ..NMe2 

:X 
(4) 

where X is -NMe2 for crystal violet and -OMe for 
methoxy malachite green. The observed energies for 
crystal violet are now 0, 1.760, 1.760 and 2.750; 
and the species are, respectively, Ai, E, E and Ax of 
C3V.13 For methoxy malachite green the energies 
are x, x + 1.650, x + 2.160 and x + 2.960 with 
species, respectively, A, B, A and A.13 

In incorporating four structures we cannot re
move the ambiguity as neatly as in the last section. 
We begin by noting that for crystal violet itself, 
for the A1 species m = 2, from the existence of the 
two fragments 

(1) + (2) + (3) and 
(4) 

This means that S - 1 (CV) is a function of c.16 

main assumption we make is that 

/SEn SEy, 

The 

E' (mMG) = E'(CV) + 

SEn 

0 

0 

0 

just as for the 3 X 3 case. However in spite of SEi2 
= SE13 = SE21 = §£31 we cannot determine all the 
arbitrary constants. We have to find c in E' (CV) 

(16) In a manner analogous to that used to find S - 1 (mMG) in 
the 3 X 3 case we find at this stage 

s-1 = 

/ 3 - A ( I - c2)'A 
3- 'A( I - ^)1A 
3 - A ( I - C2)'A 

0 2(6)-1A 3- 'Ac\ 

2-Va - 6 - 1 A 3-1Ac 

- 2 - ' A - 6 - 1 A 3"1Ac 

0 0 - 1 ( 1 - c2)'/K 

and SEu, ^Ei2 and SEU, all from the three observed 
colors of methoxy malachite green. 

The difficulty can be overcome only if another 
condition is added. The condition chosen (after 
considerable exploration) was 

SEi1 = 0 

w h i c h r e s u l t e d in t h e fo l lowing v a l u e s 

SE'U 

SE'12 

0.707 

0.940 

SE'n = 0 

The value for 8E'n is actually independent of c, as 
will be shown below. We note first that the value 
of SE'n is in accord with expectations based on 
structuresi just as in the 3 X 3 case.17 In addition 
5E12 = SEis has happily turned out to be zero. 
That is, when the detailed shape of the i^''s for 
methoxy malachite green is refined so that E[\ is not 
affected by the perturbation, then neither is E[2. 
The result is that the perturbation is isolated to the 
diagonal. 

To obtain 5E11 we work with the observed traces 
trace E(CV) = 6.270 
trace E(mMG) - 4 x + 6.770 

For each molecule the second state is 
^2 = 2-1A(^ - ^) 

so that Ei2(CV) = £ji(mMG). In consequence 
the 1-2 transition energy difference 

[E22(CV) - En(CV)] - [£22(mMG) - £u(mMG)] 

gives x directly (x = 1.760 - 1.650 = 0.110). 
Now we find the difference 

trace E(mMG) - trace E(CV) - 0.940 

The difference of traces in the structure representa
tion is also 0.940 by the trace invariance property. 
Moreover in the structure representation only Eu 
changes, going from crystal violet to methoxy mal
achite green, so 5Si1 = 0.940. 

To find c and SEi2 we use various c values to get 
various E ' (CV). For each value and using 5E1I = 
0.940 and 5.EH = 0 we obtain a trial matrix 

E' (mMG) = E'(CV) + SE' 

This matrix is now dependent directly on 5E]'2. 
When this matrix on diagonalization exactly re
produces the observed energy matrix, then c and 
5Ei'2 are determined. As noted above this proce
dure was carried out numerically, with the result 
5E{2 = 0 ± 0.05 and c = 0.707 ± 0.1.1S 

To summarize, the 4 X 4 transformation matrix 
for Crystal Violet is 

0.4083X 
0.4083 \ 

0.4083 I 
- 0 . 7 0 7 1 / 

0.5 to the 
(17) The meaning to be attached to the fact that 5£'n is somewhat 

different in the 3 X 3 and 4 X 4 cases will be clarified by the treatment 
in the next section. 

(18) It was found, moreover, that c and 5E'it cannot be varied in 
tandem so as to give an E ' (mMG) which on diagonalization still gives 
the observed energies. 
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ground state. The energy in the structure repre
sentation is 

E'(CV) 

1.632 -0.128 -0.128 -0.794N 
-0.128 1.632 -0 .128 -0.794 

-0 .128 -0 .128 1.632 -0.794 
, -0 .794 -0.794 -0.794 1.375/ 

For methoxy malachite green 

(0.2811 0 0.5784 0.7663X 

0.4411 0.7071 -0.5067 0.2204 \ 
0.4411 -0.7071 -0.5067 0.2204 I 
0.7293 0 0.3902 -0 .5618/ 

Note tha t the contribution to ^i by structure2 (1) 
(in which according to structure! (1) the oxygen 
acquires a positive charge) is only 0.08; while each 
nitrogen has the charge with a weight of 0.19. The 
E ' for methoxy malachite green is easily obtained 
from E ' (CV) because only 5E'n ^ 0. 

I t should be specially emphasized t ha t in the 
Heisenberg representation all four diagonal ele
ments must be changed to represent methoxy mala
chite green as related to crystal violet. In the 
structure representation, now for the 4 X 4 case, 
the perturbation is represented through the varia
tion of only one matrix element. The reduction in 
the number of changing matrix elements is promis
ing not only from the standpoint of classification of 
spectra, bu t also from the standpoint of making 
predictions. 

Relation between the Two Treatments.—The 
question arises as to whether or not the 4 X 4 
t rea tment is better than the 3 X 3 . While there 
is more information involved in the 4 X 4 case, 
there is also an extra assumption needed. The ul
t imate decision about the most suitable number of 
structures to be incorporated must be made with 
reference to predictions. Since predictions for the 
tr iphenylmethane dye case are not made in this pa
per, but in paper I I I , we cannot say here which 
t rea tment is better. In this section we shall, how
ever, compare the 3 X 3 and 4 X 4 cases from the 
standpoint of transformation theory. 

A new matrix 
R-KCV) 

0 2(6)-A 0\ 
2-1A - 6 - 1 A 0 

-2"1A - 6 - 1 A 0 

0 0 1/ 

is first defined. I t is the same as S - 1 for the 3 X 3 
case except tha t an extra dimension is appended 
trivially. (All structure representation matrices 
are really only upper corners of infinitely large ma
trices.) The fourth state can have any symmetry. 
Now let us consider R - 1 as a modification of the 
4 X 4 S - 1 (CV) given in the last section. This 
shifted point of view is to be understood as follows. 

The E ' in the 4 X 4 case considered in the last 
section can be conceived as being set up using partic
ular ^"s and 

-E'u = f^*H ^dT 

The S - 1 matrix in the 4 X 4 case in the last section 
then shows how the ^ ' ' s are combined to give the 

stat ionary state ^ 's(^j 's) . The R - 1 matrix above 
tells how the same state ^ ' s are to be constituted. 
However since R - 1 ^ S - 1 the description must 
necessarily be in terms of different s tructure i^'s 
which we may denote as tps, as was done earlier in 
this paper. The ^' 's have the same general shape as 
the i/-''s bu t a different detailed shape. 

We next look for an expression for the <p''s in 
terms of the \J/''s. We had 

E(CV) = SE'(CV)S-' 

Now denoting the particular structure representa
tion obtained using R in place of S with a double 
prime, we have E" = R - 1 E R so t ha t 

E"(CV) = R-1SE^CV)S-1R 

Here R - 1 S plays the role of a single transformation 
matrix from one structure representation to an
other. The rules of transformation theory give 

^ = E ( S - 1 R ) ^ ' 
i 

The matrix of the coefficients in this equation is 

S-1R 

(p* ff° <p* 

-0.0976 -0.0976 -0.4083X 
0.9024 -0.0976 -0.4083 \ 

-0.0976 0.9024 -0.4083 1 
0.4083 0.4083 0.7071/ 

The last column is ^4 = ^4 which follows from the 
nature of the R representation. The first three 
columns show tha t p1 to <pz have a considerable 
amount of ^ 4 in them. 

I t is interesting to analyze matrix elements in the 
3 X 3 case from the viewpoint of the transformation 
above. The rather large interaction, say 

E"n = /V*flV3dr 0.587 

may be understood as compounded mainly from the 
small interaction 

E'u = f<pl*H<p3dr = -0.128 

and the larger value for 
E'u = f^H^dr = -0.794 

I t is possible, similarly, to understand the anoma
lous increase in |£"12 | = l-£"ia| going from crystal 
violet to methoxy malachite green which was ob
served in the 3 X 3 case; and the difference be
tween dE"n and SE'u. 

I t will be appreciated tha t absolute detailed 
shape of ^(cVs cannot strictly be obtained in the 
work with the structure representation; bu t tha t 
relative detailed shape can be found, as in the illu
minating interpretation of the <p!'s as related to the 
\pvs above. In paper I I I , when we consider intensi
ties, we shall see tha t some progress can be made 
toward estimating absolute detailed shapes of struc
tures. However, there will not be a proliferation of 
information, as there seems to be in the case of 
fundamental theories like quan tum mechanics. 
The structure representation method is a method of 
observable quanti t ies; and the quantities ob
served in molecular spectroscopy, and related 
fields, are few. 
SEATTLE, WASHINGTON 


